(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
+(X, 0) → X
+(X, s(Y)) → s(+(X, Y))
f(0, s(0), X) → f(X, +(X, X), X)
g(X, Y) → X
g(X, Y) → Y
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
+'(X, 0') → X
+'(X, s(Y)) → s(+'(X, Y))
f(0', s(0'), X) → f(X, +'(X, X), X)
g(X, Y) → X
g(X, Y) → Y
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
+'(X, 0') → X
+'(X, s(Y)) → s(+'(X, Y))
f(0', s(0'), X) → f(X, +'(X, X), X)
g(X, Y) → X
g(X, Y) → Y
Types:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → f
g :: g → g → g
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
+',
fThey will be analysed ascendingly in the following order:
+' < f
(6) Obligation:
TRS:
Rules:
+'(
X,
0') →
X+'(
X,
s(
Y)) →
s(
+'(
X,
Y))
f(
0',
s(
0'),
X) →
f(
X,
+'(
X,
X),
X)
g(
X,
Y) →
Xg(
X,
Y) →
YTypes:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → f
g :: g → g → g
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
+', f
They will be analysed ascendingly in the following order:
+' < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s4_0(
a),
gen_0':s4_0(
n6_0)) →
gen_0':s4_0(
+(
n6_0,
a)), rt ∈ Ω(1 + n6
0)
Induction Base:
+'(gen_0':s4_0(a), gen_0':s4_0(0)) →RΩ(1)
gen_0':s4_0(a)
Induction Step:
+'(gen_0':s4_0(a), gen_0':s4_0(+(n6_0, 1))) →RΩ(1)
s(+'(gen_0':s4_0(a), gen_0':s4_0(n6_0))) →IH
s(gen_0':s4_0(+(a, c7_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
+'(
X,
0') →
X+'(
X,
s(
Y)) →
s(
+'(
X,
Y))
f(
0',
s(
0'),
X) →
f(
X,
+'(
X,
X),
X)
g(
X,
Y) →
Xg(
X,
Y) →
YTypes:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → f
g :: g → g → g
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) → gen_0':s4_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
The following defined symbols remain to be analysed:
f
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(11) Obligation:
TRS:
Rules:
+'(
X,
0') →
X+'(
X,
s(
Y)) →
s(
+'(
X,
Y))
f(
0',
s(
0'),
X) →
f(
X,
+'(
X,
X),
X)
g(
X,
Y) →
Xg(
X,
Y) →
YTypes:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → f
g :: g → g → g
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) → gen_0':s4_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) → gen_0':s4_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
+'(
X,
0') →
X+'(
X,
s(
Y)) →
s(
+'(
X,
Y))
f(
0',
s(
0'),
X) →
f(
X,
+'(
X,
X),
X)
g(
X,
Y) →
Xg(
X,
Y) →
YTypes:
+' :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
f :: 0':s → 0':s → 0':s → f
g :: g → g → g
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
hole_g3_0 :: g
gen_0':s4_0 :: Nat → 0':s
Lemmas:
+'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) → gen_0':s4_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s4_0(0) ⇔ 0'
gen_0':s4_0(+(x, 1)) ⇔ s(gen_0':s4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
+'(gen_0':s4_0(a), gen_0':s4_0(n6_0)) → gen_0':s4_0(+(n6_0, a)), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)